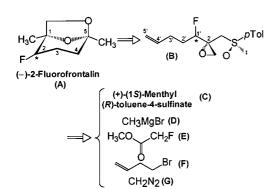
Synthesis of 2-Fluoro Analogues of Frontalin

Pierfrancesco Bravo,*[a] Massimo Frigerio,^[a] Taizo Ono,^[c] Walter Panzeri,^[b] Cristina Pesenti,^[a] Akiko Sekine,^[c] and Fiorenza Viani^[b]


Keywords: Natural products / Epoxidations / Asymmetric synthesis / Fluorine

The synthesis of enantiomerically and diastereomerically pure (-)-(1R,2R,5R)- and (-)-(1R,2S,5R)-2-fluoro frontalin (7) starting from (+)-(1S)-menthyl-(R)-toluene-4-sulfinate, methylmagnesium bromide, methyl fluoroacetate, 4-pentenyl bromide and diazomethane is described. The absolute

stereochemistry was unambiguously determined by X-ray analysis of (+)- $(1S,2R,5S,R_S)$ - $\mathbf{5}$, an intermediate in the synthesis of the enantiomeric (+)-(1S,2R,5S)-2-fluoro frontalin (71).

Introduction

(-)-(1*S*,5*R*)-Frontalin, (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]-octane) is the bioactive component of the aggregation pheromone of pine beetles of the *Dendroctonus* family. ^[1] The first synthesis of the enantio- and diastereopure fluoroanalogues of frontalin was recently published. ^[2] In that case, each hydrogen atom of the methyl group at C-1 of the (-)-frontalin skeleton was replaced by a fluorine. We now report the preparation of the first corresponding enantioand diastereopure 2-fluoro analogues, in which one of the two hydrogen atoms of the methylenic carbon at C-2 of the six-membered ring of the bicycle structure of frontalin is selectively replaced by one atom of fluorine, following the synthetic chiral building block approach (Scheme 1). ^[3]

Scheme 1. Retrosynthetic scheme

[a] Dipartimento di Chimica del Politecnico, via Mancinelli 7, I-20131 Milano, Italy Fax: (internat.) + 39-(0)2/23993080 E-mail: bravo@dept.chem.polimi.it

[b] C.N.R. Centro di Studio sulle Sostanze Organiche Naturali, via Mancinelli 7, I-20131 Milano, Italy Fax: (internat.) + 39-(0)2/23993080 E-mail: viani@dept.chem.polimi.it

[c] National Industrial Research Institute of Nagoya, Hirate-cho 1–1, Kita-ku, Nagoya City, Aichi Prefecture 462, Japan As shown in the retrosynthetic scheme, the key intermediate of the global process is the chiral, diastereo- and enantiopure α -fluorosubstituted oxirane **B** whose framework was assembled following a pattern already employed for the synthesis of different selectively fluorinated biologically relevant compounds, [4] and whose stereochemistry is strictly dependent on that of the chiral auxiliary. [5] As the C-1 stereocenter of the final frontalin **A** corresponds to the C-2 stereocenter of **B**, the choice of the appropriate source of chirality, (+)-(1S)-menthyl-(R)-toluene-4-sulfinate (C) or the corresponding (-)-enantiomer, drives the synthesis towards (-)-(1R,5R)- or (+)-(1S,5S)-2-fluorofrontalin **A**, respectively.

Methyl magnesium bromide **D** furnished the methylene group α to the sulfoxide of **B** and fluoroacetic acid methyl ester **E** was the source of the "CHF" grouping on the sixmembered ring of frontalin **A**. The 4-pentenyl bromide **F** furnished the C-2′–C-5′ carbons of the intermediate **B** (C-3, C-4 and the quaternary C-5 of **A**). Diazomethane **G** gave the methylene of the epoxide ring of **B**. The fluorine atom at C-2 of **A** can be equatorial (2*R*) or axial (2*S*) depending on the C-1′ stereocenter of **B**.

Results and Discussion

A nucleophilic substitution performed on (+)-(1S)-menthyl-(R)-toluene-4-sulfinate by methylmagnesium bromide gave (S_S)-methyl-(4-methylphenyl)sulfoxide whose lithium anion, acylated by methylfluoroacetate, gave (S_S)-3-fluoro1-[(4-methylphenyl)sulfinyl]propan-2-one (1). The α,γ -bisanion was alkylated by reaction with 4-butenyl bromide to afford (3R/S, S_S)-3-fluoro-1-[(4-methylphenyl)sulfinyl]hept-6-en-2-one (2) in acceptable yield (66%) and as a nearly 1:1 diastereomeric mixture. The two ketones were separated by repeated flash chromatography in cyclohexane/ethyl acetate (7:3) and were processed separately in order to isolate and identify all the new obtained intermediates as pure compounds. From now to the end of the discussion, the syn-

SHORT COMMUNICATION

thetic process will be described mainly for the ketone $(3R,S_S)$ -2 $(R_f=0.35)$. The diastereomeric compounds obtained from the $(3S,S_S)$ -epimer 2 $(R_f=0.30)$ will be mentioned only in the case of significant differences in chemical behavior.

The chiral oxiranes $(2R,1'R,S_S)$ - and $(2S,1'R,S_S)$ -3 were prepared through a methylene insertion reaction^[6] from diazomethane onto the carbonyl group of $(3R,S_S)$ -2 (Scheme 2). This reaction led to a 6.5:1 diastereomeric mixture of $(2R,1'R,S_S)$ - and $(2S,1'R,S_S)$ -3, respectively, in a combined yield of 95%. The same reaction, performed on the $(3S,S_S)$ epimer 2, was even more diastereoselective, leading to a 12:1 mixture of $(2R,1'S,S_S)$ - and $(2S,1'S,S_S)$ -3, respectively. In both cases the main diastereomers were easily obtained in pure form by flash chromatography.

Scheme 2. Synthesis of diol (2*R*,3*R*,*S*_S)-4 from ketone (*S*_S)-1; reagents: (a) LDA, C₄H₇Br, HMPA, THF, -60 °C; (b) flash chromatography; (c) CH₂N₂, CH₃OH, 0 °C; (d) HClO₄, THF/H₂O, 40 °C

The acidic electrophilic opening reaction of the oxirane ring of pure $(2R,1'R,S_S)$ -3 gave, in 5 days at 40 °C and in good yield (85%), the diol $(2R,3R,S_S)$ -4. A Wacker oxidative process of the terminal olefin of 4, followed by spontaneous ketalization of the reactive intermediate ketone, afforded the bicyclic structure of frontalin. Subsequent sulfoxide reduction, [7] followed by hydrogenolytic removal of the *p*-tolylthio group, led to the enantio- and diastereomerically pure 2-fluoro analogue of fontalin, (–)-(1R,2R,5R)-7 (fluorine equatorially disposed), in 74% yield from $(2R,3R,S_S)$ -4 (Scheme 3).

$$(2R,3R,S_S)\cdot 4 \xrightarrow{a} \rho Tol \xrightarrow{F} CH_3 \xrightarrow{b} CH_3$$

$$\rho Tol \xrightarrow{F} CH_3 \xrightarrow{c} H_3C \xrightarrow{l_{min}O_{\parallel ll}} CH_3$$

Scheme 3. Synthesis of 2-fluorofrontalin (1R,2R,5R)-7 from diol $(2R,3R,S_S)$ -4; reagents: (a) PdCl₂/CuCl₂, O₂, diglyme, room temp.; (b) NaI, $(CF_3CO)_2O$, CH_3COCH_3 , -20 °C; (c) Raney-Ni, $(CH_2OH)_2$, 110 °C

Moreover, starting from $(3S,S_S)$ -2, the epimer (–)-(1R,2S,5R)-7, with the fluorine atom in an axial position (Figure 1), was easily obtained and isolated in comparable overall yield (76%).

Figure 1. 2-Fluorofrontalin (-)-(1R,2S,5R)-7

Both the C-2 epimers of enantiomeric (+)-fluorofrontalin, (1S,2S,5S)- and (1S,2R,5S)-7, were obtained following an identical synthetic procedure starting from (-)-(1R)-menthyl-(S)-toluene-4-sulfinate as the chiral source of the synthesis. [8] The assignment of the stereochemistry was based on an X-ray analysis of $(1S,2R,5S,R_S)$ -5, one of the intermediates in the synthesis of (+)-(1S,2R,5S)-7 frontalin. [9] Figure 2 shows the corresponding perspective view. [10]

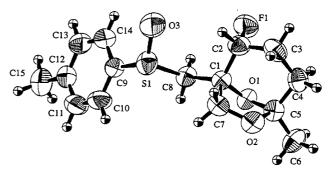


Figure 2. Perspective view of $(1S,2R,5S,R_S)$ -5

Having determined the configuration at the C-1 and C-2 stereocenters of $(1S,2R,5S,R_S)$ -5, the stereochemistries of the precursors easily followed. As a consequence, the stereochemistries of all the intermediates leading to (–)-frontalins were deduced from the enantiomeric relationships existing between the two different series of compounds.

Conclusion

Two diastereo- and enantiopure fluoro analogues of (-)-frontalin, the natural pheromone, and of (+)-frontalin, its enantiomer, were obtained following the synthetic chiral building block approach. The choice of the appropriate source of chirality, (+)-menthyl toluene-4-sulfinate or the corresponding (-)-enantiomer, neatly drove the process towards (-)- or (+)-2-fluorofrontalin, respectively.

Experimental Section

Preparation of 2-Fluorofrontalin (7) from 1-Sulfenylmethyl-2-Fluorofrontalin (6): Raney-Nickel (840 mg) was added to a solution of (1R,2R,5R)-6 (280 mg, 1.00 mmol) in 1,2-dihydroxyethane (3 mL) and the black slurry was stirred under a hydrogen atmosphere at 110 °C for 24 h. When the substrate was completely used up (TLC

monitoring in *n*-hexane/ethyl acetate, 9:1), the white solution was transferred into a flask, the residual black powder was washed twice with 1,2-dihydroxyethane $(2 \times 1 \text{ mL})$ which was combined with the white solution. After distillation (oven temperature = 115°C) fluorofrontalin (1R,2R,5R)-7 (140 mg, 88% yield) was isolated. $- [\alpha]_D^{20} = -31.85$ (c = 2.0, CDCl₃). - b.p. = 110 °C. - ¹H NMR (CDCl₃): $\delta = 1.41$ and 1.44 (s, 2 × 3 H, 1- and 5-CH₃), 1.63–2.14 (m, 4 H, 3- and 4-H₂), 3.46 (br. d, J = 7.22 Hz, 1 H, 7a-H) and 4.17 (br. dd, J = 7.22 and 1.23 Hz, 1 H, 7b-H), 4.43 (br. ddd, J = 49.21, 9.62 and 6.65 Hz, 1 H, 2-H). – ¹⁹F NMR (CDCl₃): $\delta = -186.83$ (br. dd, J = 49.21, 17.42 and 16.25 Hz, 1 F, 1-F). – IR (film): $\tilde{v} = 2889 \text{ cm}^{-1}$, 2940, 1719, 1458, 1380, 1357, 1259, 1202, 1132, 1036, 934, 874, 850, 829, 732. – DIS-EI-MS (70 eV): m/z $(\%) = 160 \text{ [M}^{+\bullet}] (28), 130 \text{ [C}_6\text{H}_7\text{O}_2\text{F}^{+\bullet}] (25), 118 \text{ [C}_6\text{H}_{11}\text{OF}^{+\bullet}]$ (70), 114 $[C_6H_7OF^{+\bullet}]$ (45), 98 $[C_6H_{10}O^{+\bullet}]$ (95), 95 $[C_6H_7O^+]$ (45), 89 $[C_5H_8F^+]$ (72), 85 $[C_5H_8F^+]$ (45), 72 $[C_5H_{12}^{+\bullet}]$ (100), 71 $[C_5H_{11}^+]$ $(70), 69 \left[C_5 H_9^+\right] (71), 59 \left[C_3 H_4 F^+\right] (35), 57 \left[C_4 H_9^+\right] (20), 55 \left[C_4 H_7^+\right]$ (33), 43 $[C_2H_3O^+]$ (85), 41 $[C_3H_5^+]$ (55). – GC-MS; t_1 , m/z (%): 7.16 min., 160 (99) [M⁺, (1R,2R,5R)-7]. - C₈H₁₃FO₂ (160.19): calcd. C 59.97, H 8.18; found C 59.95, H 8.21.

From (1R,2S,5R)-6, keeping the oven temperature at 125 °C, (1R,2S,5R)-7 (145 mg, 90% yield) was isolated. – $[\alpha]_D^{20} = -39.48$ $(c = 2.0, CDCl_3). - b.p. = 120 \, ^{\circ}C. - ^{1}H \, NMR \, (CDCl_3): \delta = 1.42$ and 1.48 (s, 2 × 3 H, 1- and 5-CH₃), 1.55-2.50 (m, 4 H, 3- and 4- H_2), 3.48 (br. dd, J = 7.51 and 7.22 Hz, 1 H, 7a-H), 3.78 (br. d, J =7.51 Hz, 1 H, 7b-H), 4.30 (br. ddd, J = 49.00, 3.75 and 3.25 Hz, 1 H, 2-H). $- {}^{19}$ F NMR (CDCl₃): $\delta = -191.3$ (br. dddd, J = 49.00, 44.04, 20.01 and 8.23 Hz, 1 F, 1-F). – IR (CDCl₃): $\tilde{v} = 3689 \text{ cm}^{-1}$, 3156, 2940, 2887, 2255, 1817, 1794, 1712, 1645, 1603, 1561, 1469, 1447, 1390, 1382, 1358, 1271, 1257, 1209, 1173, 1111, 1038, 991, 934, 885, 849, 817. – DIS-EI-MS (70 eV): m/z (%) = 160 [M⁺•] (5), 130 $[C_6H_7O_2F^{+\bullet}]$ (5), 118 $[C_6H_{11}OF^{+\bullet}]$ (18), 98 $[C_6H_{10}O^{+\bullet}]$ (19), 89 $[C_5H_8F^+]$ (20), 72 $[C_5H_{12}^{+\bullet}]$ (22), 71 $[C_5H_{11}^+]$ (20), 59 $[C_3H_4F^+]$ (10), 57 $[C_4H_9^+]$ (5), 43 $[C_2H_3O^+]$ (100). – GC-MS; t_1 , m/z (%): 7.18 min, 160 (95) [M⁺, (1R,2S,5R)-7]. – $C_8H_{13}FO_2$ (160.19): calcd. C 59.97, H 8.18; found C 60.00, H 8.20.

Acknowledgments

CNR Progetto Finalizzato Beni Culturali is gratefully acknowledged for financial support.

^[1] T. D. J. D'Silva, D. W. Peck, *J. Org. Chem.* **1972**, *37*(11), 1828–1829.

P. Bravo, E. Corradi, M. Frigerio, S. V. Meille, W. Panzeri, C. Pesenti, F. Viani, *Tetrahedron Lett.* 1999, 40, 6317–6320.

^{[3] [3}a] G. Solladié, in *Methods in Organic Synthesis (Houben-Weyl)* (Eds.: G. Helmchen, R. W. Hoffman, J. Mulzer, E. Schaumann), Thieme, Stuttgart, New York, **1995**, vol. E21, 1056–1076. – [3b] G. Solladié, in *Methods in Organic Synthesis (Houben-Weyl)* (Eds.: G. Helmchen, R. W. Hoffman, J. Mulzer, E. Schaumann), Thieme, Stuttgart, New York, **1995**, vol. E21, 1793–1818. – [3c] P. Bravo, G. Resnati, in *Perspectives in the Organic Chemistry of Sulfur* (Eds.: B. Zwanenburg and A. J. H. Klunder), Elsevier, Amsterdam, **1987**, vol. 28, 89–103. – [3d] P. Bravo, M. Zanda, in *Enantiocontrolled Synthesis of Fluoro Organic Compounds: Stereochemical Challenges and Biomedical Targets* (Ed.: V. A. Soloshonok), Wiley, Chichester, **1999**, chapter 4.

 ^{[4] [4}a] P. Bravo, G. Resnati, P. Angeli, M. Frigerio, F. Viani, A. Arnone, G. Marucci, A. Cantalamessa, J. Med. Chem. 1992, 35(17), 3102-3110. - [4b] A. Arnone, P. Bravo, A. Donadelli, G. Resnati, Tetrahedron 1996, 52(1), 131-142.

^[5] W. Kroutil, I. Osprian, M. Mischitz, K. Faber, *Synthesis* 1997, 156–158.

^[6] A. Arnone, P. Bravo, M. Frigerio, F. Viani, V. A. Soloshonok, Tetrahedron 1998, 54, 11841–11860.

^[7] J. Drabowicz, S. Oae, Synthesis 1977, 404-405.

^[8] J. Drabowicz, B. Bujnicki, M. K. Mikolajczy, J. Org. Chem. 1982, 47, 3325-3327.

^[9] Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-141139 Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 IEZ, UK [Fax: (internat.) + 44–1223/336– 033; E-mail: deposit@ccdc.cam.ac.uk].

^[10] Full X-ray diffraction data will be published in due course.

Received November 19, 1999
[O99638]